Приложение 2 к РПД
Теория функций действительной переменной
44.03.05 Педагогическое образование
(с двумя профилями подготовки)
направленность (профили)
Математика. Информатика
Форма обучения – очная
Год набора – 2021

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

1.	Кафедра	Математики, физики и информационных технологий			
2.	Направление подготовки	44.03.05 Педагогическое образование (с двумя профилями			
		подготовки)			
3.	Направленность (профили)	Математика. Информатика			
4.	Дисциплина (модуль)	Б1.О.05.07 Теория функций действительной переменной			
5.	Форма обучения	Очная			
6.	Год набора	2021			

2. Перечень компетенций

- **ОПК-8**: Способен осуществлять педагогическую деятельность на основе специальных научных знаний

3. Критерии и показатели оценивания компетенций на различных этапах их формирования

Этап формирования	Формируема	Критерии	Формы контроля		
компетенции (разделы, темы дисциплины)	я компетенция	Знать:	Уметь:	Владеть:	сформированности компетенций
Мощность множества	ОПК-8				Коллоквиум
Классификация пространств. Метрические пространства	ОПК-8	основные методы доказательств теорем и утверждений Теории функций действительного переменного	доказывать основные теоремы и утверждения Теории функций действительного	владеть основными понятиями Теории функций действительного переменного, математическим аппаратом, необходимым при изучении других дисциплин	Коллоквиум Экзамен
Линейные нормированные пространства	ОПК-8		переменного, проверять выполнение аксиом метрики и нормы, решать основные типы		Контрольная работа Экзамен
Принцип сжимающих отображений и его применения	ОПК-8		задач данного курса, используя при этом изученный аппарат		Контрольная работа Экзамен
Линейные функционалы и операторы	ОПК-8				Экзамен

Шкала оценивания в рамках балльно-рейтинговой системы: «неудовлетворительно» – 60 баллов и менее; «удовлетворительно» – 61-80 баллов; «хорошо» – 81-90 баллов; «отлично» – 91-100 баллов

4. Критерии и шкалы оценивания

4.1. Активность на занятиях

Процент правильных ответов	До 60	61-80	81-90	91-100
Количество баллов за активность на занятии	0,2	0,6	0,8	1-1,3

4.2 Коллоквиум

Итого:	20	
Количество баллов за ответ на вопрос	10	10
Номер вопроса	1	2

4.3 Контрольная работа

Количество правильно решенных заданий	1	2	3	4	5
Количество баллов за решенное	4	4	4	4	4
задание	•		•	<u>'</u>	
Итого:			20		

5. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

1) Типовое контрольное задание

1. Какова мощность множества всех последовательностей действительных чисел?

Решение. Пусть x_1 , x_2 , x_3 , ... произвольная последовательность действительных чисел. Так как множество всех последовательностей натуральных чисел имеет мощность континуума, то каждому числу x_n ($n=1,\ 2,\ 3,\ ...$) соответствует последовательность натуральных чисел C_{n_1} , C_{n_2} , C_{n_3} , ... Перенумеруем множество всех пар натуральных чисел ($n,\ m$): ($n_1,\ m_1$), ($n_2,\ m_2$), ($n_3,\ m_3$), ... (это возможно, так как множество таких пар счетно) и поставим в соответствие последовательности $x_1,\ x_2,\ x_3,\ ...$ последовательность натуральных чисел $C_{n_1m_1}$, $C_{n_2m_2}$, $C_{n_3m_3}$, ... Тем самым устанавливается взаимно однозначное соответствие между множеством всех последовательностей действительных чисел и множеством всех последовательностей натуральных чисел. Значит, рассматриваемое множество имеет мощность континуума. Ответ. Мощность континуума.

2. Являются ли метриками на прямой следующие функции:

a)
$$\rho(x, y) = x^3 - y^3$$
, 6) $\rho(x, y) = |x^3 - y^3|$, B) $\rho(x, y) = |x^2 - y^2|$.

<u>Решение.</u> а) нет, так как не выполнено условие $\rho(x, y) \ge 0$.

б) Да, так как выполнены все аксиомы метрики. В самом деле, 1) Очевидно, что $\rho(x, y) \ge 0$, кроме того $\rho(x, y) = 0 \Leftrightarrow |x^3 - y^3| = 0 \Leftrightarrow x^3 - y^3 = 0 \Leftrightarrow x^3 = y^3 \Leftrightarrow x = y$.

2)
$$\rho(x, y) = |x^3 - y^3| = |y^3 - x^3| = \rho(y, x),$$

3)
$$\rho(x, y) = |x^3 - y^3| = |(x^3 - z^3) + (z^3 - y^3)| \le |x^3 - z^3| + |z^3 - y^3| = \rho(x, z) + \rho(z, y)$$
.

Таким образом, $\rho(x, y)$ метрика на [.

в) нет, так как $\rho(-1, 1) = 0$, но $x \neq y$, то есть не выполнена первая аксиома.

3. Пусть E - предгильбертово пространство. Доказать, что $\forall x, y \in E$ выполняется равенство $\|x+y\|^2 + \|x-y\|^2 = 2\left(\|x\|^2 + \|y\|^2\right)$. Какую геометрическую теорему обобщает это соотношение?

Решение.
$$\|x+y\|^2 + \|x-y\|^2 = (x+y, x+y) + (x-y, x-y) = (x, x) + 2(x, y) + (y, y) + (x, x) - 2(x, y) + (y, y) = 2(x, x) + 2(y, y) = 2(\|x\|^2 + \|y\|^2)$$
.

Это соотношение обобщает теорему: в параллелограмме сумма квадратов длин диагоналей равна сумме квадратов длин его сторон.

Вопросы к коллоквиуму:

- 1. Классификация пространств. Топологические пространства. Хаусдорфовость пространства.
- 2. Определение метрических пространств. Примеры метрических пространств.
- 3. Хаусдорфовость метрического пространства в естественной топологии.
- 4. Сходимость в метрическом пространстве. Фундаментальные последовательности. Полные метрические пространства. Непрерывность метрики.
- 5. Внутренние, внешние и граничные точки множества в метрическом пространстве.
- 6. Линейные пространства. Линейные нормированные пространства. Определение метрики в нормированном пространстве.
- 7. Банаховы и гильбертовы пространства. Скалярное произведение. Лемма: функция $\sqrt{(a, a)} = ||a||$ является нормой. Евклидовы пространства.
- 8. Лемма о последовательности стягивающихся шаров.
- 9. Определение сжимающего отображения. Неподвижная точка сжимающего отображения. Принцип сжимающих отображений.
- 10. Применения принципа сжимающих отображений.
- 11. Непрерывные отображения метрических пространств.
- 12. Понятие компакта. Компакты в ^п и полнота пространства ^п. Свойства непрерывных функций на компакте. (Определение. Теорема1, Леммы 1-3).
- 13. Понятие компакта. Компакты в пи полнота пространства пи . Свойства непрерывных функций на компакте. (Теоремы 2-4). Связные множества и непрерывность
- 14. Линейные операторы в линейных нормированных пространствах. Линейные функционалы.
- 15. Общий вид оператора проектирования на гиперплоскость. Сопряженное пространство и сопряженный оператор.
- 16. Основы дифференциального исчисления в нормированных пространствах.

Вопросы к зачету:

- 1. Классификация пространств. Топологические пространства. Хаусдорфовость пространства.
- 2. Определение метрических пространств. Примеры метрических пространств.
- 3. Хаусдорфовость метрического пространства в естественной топологии.
- 4. Сходимость в метрическом пространстве. Фундаментальные последовательности. Полные метрические пространства. Непрерывность метрики.
- 5. Внутренние, внешние и граничные точки множества в метрическом пространстве.
- 6. Линейные пространства. Линейные нормированные пространства. Определение метрики в нормированном пространстве.
- 7. Банаховы и гильбертовы пространства. Скалярное произведение. Лемма: функция $\sqrt{(a, a)} = ||a||$ является нормой. Евклидовы пространства.
- 8. Лемма о последовательности стягивающихся шаров.
- 9. Определение сжимающего отображения. Неподвижная точка сжимающего отображения. Принцип сжимающих отображений.
- 10. Применения принципа сжимающих отображений.
- 11. Непрерывные отображения метрических пространств.
- 12. Понятие компакта. Компакты в $\binom{n}{n}$ и полнота пространства $\binom{n}{n}$. Свойства непрерывных функций на компакте. (Определение. Теорема1, Леммы 1-3).
- 13. Понятие компакта. Компакты в $\binom{n}{n}$ и полнота пространства $\binom{n}{n}$. Свойства непрерывных функций на компакте. (Теоремы 2-4). Связные множества и непрерывность
- 14. Линейные операторы в линейных нормированных пространствах. Линейные функционалы.
- 15. Общий вид оператора проектирования на гиперплоскость. Сопряженное пространство и сопряженный оператор.
- 16. Основы дифференциального исчисления в нормированных пространствах.